A Priori Error Estimates for the Finite Element Discretization of Elliptic Parameter Identification Problems with Pointwise Measurements

نویسندگان

  • Rolf Rannacher
  • Boris Vexler
چکیده

We develop an a priori error analysis for the finite element Galerkin discretization of parameter identification problems. The state equation is given by an elliptic partial differential equation of second order with a finite number of unknown parameters, which are estimated using point-wise measurements of the state variable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A priori error estimates for elliptic optimal control problems with bilinear state equation

In this paper a priori error analysis for the finite element discretization of an optimal control problem governed by an elliptic state equation is considered. The control variable enters the state equation as a coefficient and is subject to pointwise inequality constraints. We derive a priori error estimates for the discretization error in the control variable and confirm our theoretical resul...

متن کامل

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Priori Error Estimates for Space-Time Finite Element Discretization of Parabolic Optimal Control Problems Part II: Problems with Control Constraints

This paper is the second part of our work on a priori error analysis for finite element discretizations of parabolic optimal control problems. In the first part [18] problems without control constraints were considered. In this paper we derive a priori error estimates for space-time finite element discretizations of parabolic optimal control problems with pointwise inequality constraints on the...

متن کامل

Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment

An adjustment scheme for the relaxation parameter of interior point approaches to the numerical solution of pointwise state constrained elliptic optimal control problems is introduced. The method is based on error estimates of an associated finite element discretization of the relaxed problems and optimally selects the relaxation parameter in dependence on the mesh size of discretization. The f...

متن کامل

Discretization of Interior Point Methods for State Constrained Elliptic Optimal Control Problems: Optimal Error Estimates and Parameter

An adjustment scheme for the relaxation parameter of interior point approaches to the numerical solution of pointwise state constrained elliptic optimal control problems is introduced. The method is based on error estimates of an associated finite element discretization of the relaxed problems and optimally selects the relaxation parameter in dependence on the mesh size of discretization. The f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • SIAM J. Control and Optimization

دوره 44  شماره 

صفحات  -

تاریخ انتشار 2005